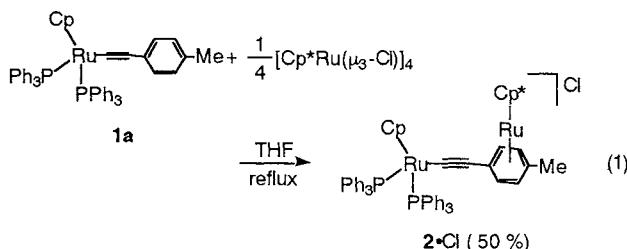


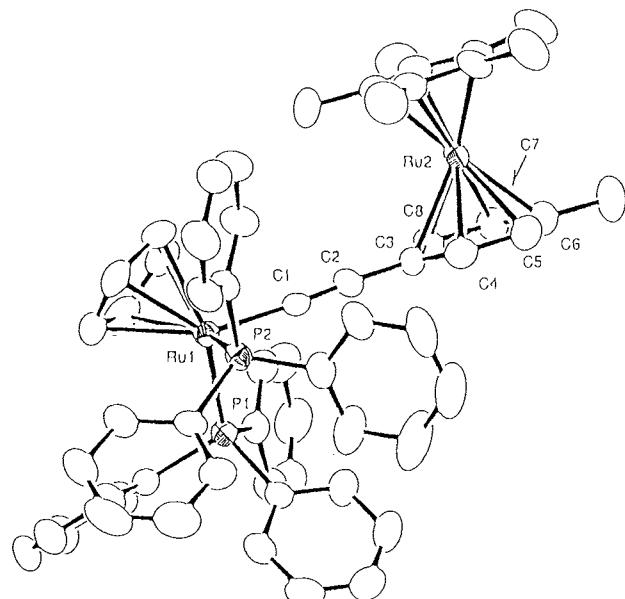
**Synthesis, Structure, and Reactivities of the $\eta^1:\eta^6$ - μ_2 -Aryl Alkynyl Diruthenium Complex.
X-Ray Structure of $[\text{Cp}(\text{PPh}_3)_2\text{Ru}(\eta^1:\eta^6\text{-}\mu_2\text{-C}\equiv\text{CC}_6\text{H}_4\text{Me-}p)\text{RuCp}^*]\text{PF}_6$
($\text{Cp} = \eta^5\text{-C}_5\text{H}_5$, $\text{Cp}^* = \eta^5\text{-C}_5\text{Me}_5$)**

Hiroyuki Matsuzaka,* Yoshiyuki Sato, Hironobu Okimura, Tomohiko Ishii, Masahiro Yamashita, Susumu Kitagawa,[#] Mitsuru Kondo,[#] Moto-o Shiro,[†] and Mikio Yamasaki[†]


*Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397
†X-Ray Research Laboratory, Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8686*

(Received May 28, 1999; CL-990445)

Preparation of a $\eta^1:\eta^6\text{-}\mu_2\text{-aryl}$ alkynyl diruthenium complex $[\text{Cp}(\text{PPh}_3)_2\text{Ru}(\eta^1:\eta^6\text{-}\mu_2\text{-C}\equiv\text{CC}_6\text{H}_4\text{Me-}p)\text{RuCp}^*]\text{Cl}$ (**2** \cdot Cl) [$\text{Cp} = \eta^5\text{-C}_5\text{H}_5$, $\text{Cp}^* = \eta^5\text{-C}_5\text{Me}_5$] and its reactions with electrophile or CO are reported. The structure of **2** \cdot PF_6 has been determined by X-ray crystallography.


Reactions of arenes with organometallic species to form η^6 -arene complexes have found numerous application in organic synthesis.^{1,2} Recently conversion of the mononuclear η^6 -arene compounds to the dinuclear $\eta^1\cdot\eta^6\cdot\mu_2$ -structures offers a new set of polynuclear complexes with σ , π -bridging ligands.³ This process proceeds via initial lithiation of the coordinated arene and subsequent reaction with organometallic compounds having halogen ligands. Another route involves treatment of η^6 -haloarene complexes with anionic organometallic nucleophiles. Here we report alternative approach to the σ, π -bridging system containing a η^6 -aryl group, which includes the reaction of an aryl alkynyl complex with a coordinatively unsaturated species to give a dinuclear $\eta^1\cdot\eta^6\cdot\mu_2$ -aryl alkynyl complex.

A dark red solution of a mixture of $\text{Cp}(\text{PPh}_3)_2\text{Ru}-(\text{C}\equiv\text{CC}_6\text{H}_4\text{Me}-p)$ (**1a**) and $[\text{Cp}^*\text{Ru}(\mu_3\text{-Cl})]_4$ (molar ratio, 4 : 1) in refluxing THF gradually turned to a yellow-brown suspension. Work up of the reaction mixture resulted in the isolation of the diruthenium $\eta^1\text{-}\eta^6\text{-}\mu_2\text{-alkynyl}$ complex $[\text{Cp}(\text{PPh}_3)_2\text{Ru}(\eta^1\text{-}\eta^6\text{-}\mu_2\text{-C}\equiv\text{CC}_6\text{H}_4\text{Me}-p)\text{RuCp}^*]\text{Cl}$ (**2**•Cl) in 50% yield, which was spectroscopically characterized (eq. 1).^{4,5} The molecular structure of **2**•Cl was established by X-ray structural analysis of the anion-exchanged complex **2**• PF_6 .⁶

The ^1H NMR spectrum of **2**•Cl exhibits two singlets at δ 4.36 and 1.95 ppm assigned to the Cp and Cp* protons, respectively, together with the signals of the PPh₃ ligands. The coordination of Cp*Ru⁺ moiety to the tolyl part of **1a** caused the characteristic upfield shift; the tolyl protons are observed at δ 5.82 and 5.23 (2H each, J = 6.1 Hz) in an ABq pattern. Similar upfield shift was observed in the mononuclear η^6 -coordinated arene complexes.¹ The IR spectrum of **2**•Cl shows a $\nu_{\text{C}\equiv\text{C}}$ absorption at 2071 cm⁻¹, which is well consistent with that observed for the parent alkynyl complex **1a**.

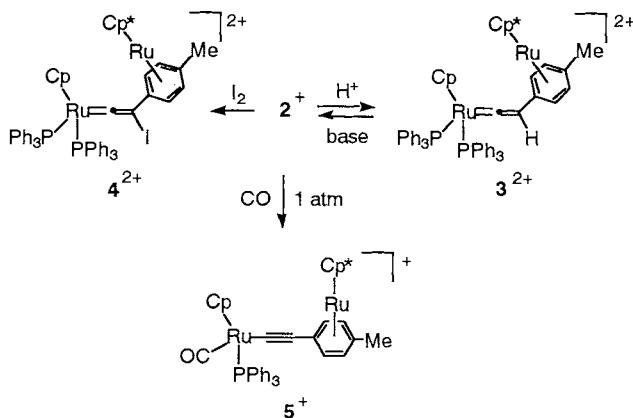

An ORTEP drawing of the **2**⁺ cation is given in Figure 1, which clearly shows the dinuclear structure where two Ru atoms are bridged by the $\eta^1\text{:}\eta^6\text{-}\mu_2\text{-C}\equiv\text{CC}_6\text{H}_4\text{Me-}p$ group. Almost linear alkynyl moiety (Ru(1)-C(1)-C(2), 175.6(4) $^\circ$; C(1)-C(2)-C(3), 174.8(5) $^\circ$) terminally bound to the "Cp(PPh₃)₂Ru" unit coordinates to the "Cp*Ru" fragment in a η^6 -manner through its tolyl ring. The distance of carbon-carbon triple bond (C(1)-C(2), 1.200(6) Å) is apparently shorter than that reported for Cp(PPh₃)₂Ru($\eta^1\text{:}\eta^2\text{-}\mu_2\text{-C}\equiv\text{CPh}$)CuCl (1.242(13) Å)⁷ or CpRu(PMe₃)₂($\eta^1\text{:}\eta^2\text{-}\mu_2\text{-C}\equiv\text{CH}$)WCp(CO)($\eta^2\text{-PhC}\equiv\text{CPh}$) (1.25(2) Å),⁸ and compares well with the values observed for terminal alkynyl complexes such as Cp(PPh₃)₂Ru(C≡CPh) (**1b**) (1.214(7) Å).⁹ The Ru-Ru distance of 6.36 Å clearly indicates the absence of bonding interaction between the two Ru atoms. The characteristic feature of the structure of **2** is that the aryl alkynyl ligand bridges two metal centers not in a common $\eta^1\text{:}\eta^2$ -fashion but in a $\eta^1\text{:}\eta^6$ -manner, presumably due to the steric

Figure 1. An ORTEP drawing of the 2^+ cation. Selected bond distances (Å) and angles (°); Ru(1)-C(1) 1.997(4), Ru(1)-P(1) 2.297(1), Ru(1)-P(2) 2.311(1), Ru(2)-C(3) 2.272(4), Ru(2)-C(4) 2.212(5), Ru(2)-C(5) 2.203(5), Ru(2)-C(6) 2.232(5), Ru(2)-C(7) 2.206(5), Ru(2)-C(8) 2.197(4), C(1)-C(2) 1.200(6), C(2)-C(3) 1.428(6); P(1)-Ru(1)-C(1) 89.9(1), P(2)-Ru(1)-C(1) 86.6(1), Ru(1)-C(1)-C(2) 175.6(4), C(1)-C(2)-C(3) 174.8(5).

hindrance around the Ru atom in **1a**. The related $\eta^1:\eta^5:\mu_2$ -alkynyl complex $\text{Cp}(\text{PPh}_3)_2\text{Ru}(\eta^1:\eta^5:\mu_2-\text{C}\equiv\text{CC}_6\text{H}_4)\text{MCp}$ ($\text{M} = \text{Fe, Ru}$) was recently prepared by treatment of $\text{Cp}(\text{PPh}_3)_2\text{RuCl}$ with ferrocenyl- or ruthenocenylacetylene.¹⁰

Addition of electrophiles to $\mathbf{2}^+$ produced the corresponding dinuclear vinylidene complexes (Scheme 1). Thus, protonation of $\mathbf{2}\bullet\text{OTf}$ ($\text{OTf} = \text{OSO}_2\text{CF}_3$)¹² with HOTf gave $[\text{Cp}(\text{PPh}_3)_2\text{Ru}(\eta^1:\eta^6:\mu_2-\text{C}=\text{CHC}_6\text{H}_4\text{Me}-p)\text{RuCp}^*]\text{[OTf]}_2$ ($\mathbf{3}\bullet\text{[OTf]}_2$) ($\mathbf{3}\bullet\text{[OTf]}_2$), which was isolated as orange plates in 93% yield and spectroscopically characterized (Scheme 1).^{12,13} The ^1H NMR spectrum of $\mathbf{3}\bullet\text{[OTf]}_2$ shows a singlet at δ 5.02 due to the proton attached to the C^{β} of the vinylidene ligand whereas its ^{13}C NMR spectrum exhibits a characteristic resonance at δ 346 assigned to the C^{α} of the vinylidene moiety. Addition of LiBHET_3 to a CH_2Cl_2 solution of $\mathbf{3}\bullet\text{[OTf]}_2$ did not yield the corresponding dinuclear alkenyl complex $[\text{Cp}(\text{PPh}_3)_2\text{Ru}(\eta^1:\eta^6:\mu_2-\text{CH}=\text{CHC}_6\text{H}_4\text{Me}-p)\text{RuCp}^*]\text{[OTf]}$, but reproduced $\mathbf{2}\bullet\text{[OTf]}$ quantitatively. Similar treatment of $\mathbf{2}\bullet\text{Cl}$ with I_2 and subsequent anion metathesis with AgBF_4 ¹² yielded the iodovinylidene complex $[\text{Cp}(\text{PPh}_3)_2\text{Ru}(\eta^1:\eta^6:\mu_2-\text{C}=\text{CIC}_6\text{H}_4\text{Me}-p)\text{RuCp}^*]\text{[BF}_4\text{]}_2$ ($\mathbf{4}\bullet\text{[BF}_4\text{]}_2$).¹⁴

Scheme 1. Anions are omitted for clarity.

On the other hand, substitution of the PPh_3 ligand in $\mathbf{2}\bullet\text{OTf}$ with CO readily proceeded under 1 atm of CO at room temperature to give $[\text{Cp}(\text{PPh}_3)(\text{CO})\text{Ru}(\eta^1:\eta^6:\mu_2-\text{C}\equiv\text{CC}_6\text{H}_4\text{Me}-p)]\text{OTf}$ ($\mathbf{5}\bullet\text{OTf}$), which was isolated as yellow needles and spectroscopically characterized (Scheme 1).¹⁵ The IR spectrum of $\mathbf{5}\bullet\text{OTf}$ shows a ν_{CO} absorption at 1952 cm^{-1} together with a $\nu_{\text{C}\equiv\text{C}}$ absorption at 2095 cm^{-1} . The ^1H NMR spectrum of $\mathbf{5}\bullet\text{OTf}$ exhibits characteristic four sets of doublet at δ 5.86, 5.42, 5.24 and 4.80 ppm assigned to the tolyl protons. Similar substitution reaction in **1b** to give $\text{Cp}(\text{PPh}_3)(\text{CO})\text{Ru}(\text{C}\equiv\text{CPh})$ was reported to proceed under 100 atm of CO at 105°C for 3 days.¹⁶ Note that the present ligand substitution readily proceeds under extremely mild reaction conditions, which strongly suggests that the Cp^*Ru fragment in $\mathbf{2}\bullet\text{OTf}$ attached to the aromatic ring in the alkynyl unit would play an important role to facilitate this transformation.

Further studies are in progress on preparation and properties of homo- and heterodinuclear $\eta^1:\eta^6:\mu_2$ -alkynyl complexes.

This work was supported by the Grant-in-Aid for Scientific Research (Priority Area No. 284-09239240) from The Ministry of Education, Science and Culture, Japan.

References and Notes

- Present address: Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501.
- M. F. Semmelhack, S. G. Davies, T. D. McCarthy in "Comprehensive Organometallic Chemistry II", ed by E. W. Abel, F. G. A. Stone, and G. Wilkinson, Pergamon, Oxford (1995), Vol. 12, Chap. 9, p 979; M. Uemura in "Advances in Metal-Organic Chemistry", ed by L. S. Liebeskind, JPI Press, Greenwich (1991), Vol. 2, p 195; H. L. Bozec, D. Touchard, and P. H. Dixneuf, *Adv. Organomet. Chem.*, **29**, 163 (1989); L. A. P. Kane-Maguire, E. D. Honig, and D. A. Sweigart, *Chem. Rev.*, **84**, 525 (1984).
- N. Taniguchi, N. Kaneta, and M. Uemura, *J. Org. Chem.*, **61**, 6088 (1996); D. R. Robertson, W. Robertson, and T. A. Stepehnson, *J. Organomet. Chem.*, **202**, 309 (1980).
- S. Lotz, P. H. Van Rooyen, and R. Meyer, *Adv. Organomet. Chem.*, **37**, 219 (1995) and references cited therein.
- After filtration, the residue was extracted with CH_2Cl_2 and chromatographed on alumina first with CH_2Cl_2 to remove a yellow band of **1a** then with MeOH/THF (3/7) to elute a yellow band of $\mathbf{2}\bullet\text{Cl}$. Evaporation of the solvent from the second band afforded a yellow solid which was recrystallized from CH_2Cl_2 /hexane to give $\mathbf{2}\bullet\text{Cl}$ as yellow columnar crystals (50%). ^1H NMR (CDCl_3) δ 7.36 - 7.09 (m, 30H, Ph), 5.82, 5.23 (d, 2H each, $J = 6.1\text{ Hz}$, $\text{C}_6\text{H}_4\text{Me}$), 4.36 (s, 5H, Cp), 2.25 (s, 3H, $\text{C}_6\text{H}_4\text{Me}$), 1.95 (s, 15H, Cp^*). IR (KBr, cm^{-1}) $\nu_{\text{C}\equiv\text{C}}$ 2071. Found: C, 62.73%; H, 5.18%. Calcd for $\text{C}_{60}\text{H}_{57}\text{ClP}_2\text{Ru}_2\bullet\text{CH}_2\text{Cl}_2$: C, 63.01%; H, 5.11%.
- Formation of the $[\text{Cp}^*\text{Ru}(\text{arene})]^+$ cation from $[\text{Cp}^*\text{RuCl}]_4$ and arenes; P. J. Fagan, M. D. Ward, and J. C. Calabrese, *J. Am. Chem. Soc.*, **111**, 1698 (1989).
- Crystal data for $\mathbf{2}\bullet\text{PF}_6$: $\text{C}_{60}\text{H}_{57}\text{F}_3\text{P}_3\text{Ru}_2$, $M = 1187.16$, monoclinic, space group $\text{P}2_1/n$ (no. 14), $a = 14.7239(2)$, $b = 18.5463(2)$, $c = 20.0903(4)\text{ \AA}$, $\beta = 104.9924(9)^\circ$, $U = 5299.3901\text{ \AA}^3$, $Z = 4$, $D_C = 1.488\text{ g\cdot cm}^{-3}$, $\mu(\text{Mo-K}\alpha) = 7.21\text{ cm}^{-1}$, $F_{000} = 2416$, $R = 0.042$, $R_w = 0.047$ [$w = 1/\sigma^2(F_0)$] for 6978 reflections with $I > 3\sigma(I)$ ($5^\circ < 2\theta < 50^\circ$, 640 parameters). The structure was solved and refined with *teXsan* program package.*
- N. V. Ragjavan and R. E. Davis, *J. Cryst. Mol. Struct.*, **6**, 73 (1976).
- K. G. Frank and J. P. Selegue, *J. Am. Chem. Soc.*, **112**, 6414 (1990).
- J. M. Wisner, T. J. Bartczak, and J. A. Ibers, *Inorg. Chim. Acta*, **100**, 115 (1985).
- M. Sato, H. Shintate, Y. Kawata, M. Sekino, M. Katada, and S. Kawata, *Organometallics*, **13**, 1956 (1994).
- The Cl^- anion in $\mathbf{2}\bullet\text{Cl}$ was exchanged to OTf^- since the protonation of $\mathbf{2}\bullet\text{Cl}$ with HOTf and subsequent recrystallization produced a mixture of $\mathbf{2}\bullet\text{[OTf]}_2$, $\mathbf{2}\bullet\text{Cl}[\text{OTf}]$, and $\mathbf{2}\bullet\text{Cl}_2$, which are difficult to separate. To avoid the similar situation, all anions were exchanged to BF_4^- before isolation of the dicationic dinuclear iodovinylidene complex $\mathbf{4}\bullet\text{[BF}_4\text{]}_2$.
- A yellow CH_2Cl_2 solution of $\mathbf{2}\bullet\text{OTf}$ prepared *in situ* by reaction of $\mathbf{2}\bullet\text{Cl}$ with AgOTf (1 equiv) immediately turned to red when added 1.5 equiv of HOTf . After removal of the solvent, the resultant solid was washed with ether and recrystallized from THF/hexane to give $\mathbf{3}\bullet\text{[OTf]}_2$ as orange plates (93%). ^1H NMR (CDCl_3) δ 7.42 - 6.96 (m, 30H, Ph), 5.95, 5.76 (d, 2H each, $J = 6.1\text{ Hz}$, $\text{C}_6\text{H}_4\text{Me}$), 5.42 (s, 5H, Cp), 5.02 (s, 1H, $\text{C}=\text{CH}\text{tol}$), 2.08 (s, 3H, $\text{C}_6\text{H}_4\text{Me}$), 1.98 (s, 15H, Cp^*). ^{13}C NMR (CDCl_3) δ 345.8 ($\text{Ru}=\text{C}=\text{CIC}_6\text{H}_4\text{Me}$). IR ($\text{CH}_2\text{Cl}_2, \text{cm}^{-1}$) $\nu_{\text{C}\equiv\text{C}}$ 1631. Found: C, 54.97%; H, 4.49%. Calcd for $\text{C}_{62}\text{H}_{58}\text{F}_6\text{O}_6\text{P}_2\text{Ru}_2\text{S}_2$: C, 55.51%; H, 4.36%.
- Formation of vinylidene complexes from **1b** and related σ -alkynyl complexes; M. J. Bruce, *Chem. Rev.*, **91**, 197 (1991).
- Yield, 91%. ^1H NMR (CDCl_3) δ 7.52 - 6.91 (m, 30H, Ph), 5.79, 5.70 (d, 2H each, $J = 6.3\text{ Hz}$, $\text{C}_6\text{H}_4\text{Me}$), 5.40 (s, 5H, Cp), 2.11 (s, 3H, $\text{C}_6\text{H}_4\text{Me}$), 2.00 (s, 15H, Cp^*). ^{13}C NMR (CDCl_3) δ 345.8 ($\text{Ru}=\text{C}=\text{CIC}_6\text{H}_4\text{Me}$). IR ($\text{CH}_2\text{Cl}_2, \text{cm}^{-1}$) $\nu_{\text{C}\equiv\text{C}}$ 1617. Found: C, 54.36%; H, 4.38%. Calcd for $\text{C}_{60}\text{H}_{57}\text{B}_2\text{F}_8\text{IP}_2\text{Ru}_2$: C, 53.66%; H, 4.28%.
- To a CH_2Cl_2 solution of $\mathbf{2}\bullet\text{OTf}$ prepared *in situ*, was bubbled CO for 15 min and the mixture was stirred for 1 week at room temperature. After removal of the solvent, the resultant solid was recrystallized from $\text{CH}_2\text{Cl}_2/\text{Et}_2\text{O}$ to give $\mathbf{5}\bullet\text{OTf}$ as yellow needles (70%). ^1H NMR (CDCl_3) δ 7.95 - 7.10 (m, 15H, Ph), 5.86, 5.42, 5.24, 4.80 (d, 1H each, $J = 6.0\text{ Hz}$, $\text{C}_6\text{H}_4\text{Me}$), 5.00 (s, 5H, Cp), 2.10 (s, 3H, $\text{C}_6\text{H}_4\text{Me}$), 1.83 (s, 15H, Cp^*). IR (KBr, cm^{-1}) $\nu_{\text{C}\equiv\text{C}}$ 2095, ν_{CO} 1952. Found: C, 61.21%; H, 5.14%. Calcd for $\text{C}_{43}\text{H}_{42}\text{ClOP}_2\text{Ru}_2$: C, 61.22%; H, 5.02%.
- M. I. Bruce and A. G. Swincer, *Aust. J. Chem.*, **33**, 1471 (1980).